1 A particle rests on a smooth, horizontal plane. Horizontal unit vectors $\mathbf{i}$ and $\mathbf{j}$ lie in this plane. The particle is in equilibrium under the action of the three forces $(-3 \mathbf{i}+4 \mathbf{j}) \mathrm{N}$ and $(21 \mathbf{i}-7 \mathbf{j}) \mathrm{N}$ and $\mathbf{R N}$
(i) Write down an expression for $\mathbf{R}$ in terms of $\mathbf{i}$ and $\mathbf{j}$.
[2]
(ii) Find the magnitude of $\mathbf{R}$ and the angle between $\mathbf{R}$ and the $\mathbf{i}$ direction.

2 The position vector of a particle at time $t$ is given by

$$
\mathbf{r}=\frac{1}{2} t \mathbf{i}+\left(t^{2}-1\right) \mathbf{j},
$$

referred to an origin $\mathbf{O}$ where $\mathbf{i}$ and $\mathbf{j}$ are the standard unit vectors in the directions of the cartesian axes $\mathrm{O} x$ and Oy respectively.
(i) Write down the value of $t$ for which the $x$-coordinate of the position of the particle is 2 . Find the $y$-coordinate at this time.
(ii) Show that the cartesian equation of the path of the particle is $y=4 x^{2}-1$.
(iii) Find the coordinates of the point where the particle is moving at $45^{\circ}$ to both Ox and Oy . [3]

The vectors $\mathbf{p}$ and $\mathbf{q}$ are given by

$$
\mathbf{p}=8 \mathbf{i}+\mathbf{j} \text { and } \mathbf{q}=4 \mathbf{i}-7 \mathbf{j} .
$$

(i) Show that $\mathbf{p}$ and $\mathbf{q}$ are equal in magnitude.
(ii) Show that $\mathbf{p}+\mathbf{q}$ is parallel to $2 \mathbf{i}-\mathbf{j}$.
(iii) Draw $\mathbf{p}+\mathbf{q}$ and $\mathbf{p}-\mathbf{q}$ on the grid.

Write down the angle between these two vectors.

4 In this question, $\mathbf{i}$ is a horizontal unit vector and $\mathbf{j}$ is a unit vector pointing vertically upwards.
A force $\mathbf{F}$ is $-\mathbf{i}+5 \mathbf{j}$.
(i) Calculate the magnitude of $\mathbf{F}$.

Calculate also the angle between $\mathbf{F}$ and the upward vertical.
Force $\mathbf{G}$ is $2 a \mathbf{i}+a \mathbf{j}$ and force $\mathbf{H}$ is $-2 \mathbf{i}+3 b \mathbf{j}$, where $a$ and $b$ are constants. The force $\mathbf{H}$ is the resultant of forces $4 \mathbf{F}$ and $\mathbf{G}$.
(ii) Find $\mathbf{G}$ and $\mathbf{H}$.

5 The resultant of the force $\binom{-4}{8} \mathrm{~N}$ and the force $\mathbf{F}$ gives an object of mass 6 kg an acceleration of $\binom{2}{3} \mathrm{~ms}^{-2}$.
(i) Calculate $\mathbf{F}$.
(ii) Calculate the angle between $\mathbf{F}$ and the vector $\binom{0}{1}$.

6 The force acting on a particle of mass 1.5 kg is given by the vector $\binom{6}{9} \mathrm{~N}$.
(i) Give the acceleration of the particle as a vector.
(ii) Calculate the angle that the acceleration makes with the direction $\binom{1}{0}$.
(iii) At a certain point of its motion, the particle has a velocity of $\binom{-2}{3} \mathrm{~ms}^{-1}$. Calculate the displacement of the particle over the next two seconds.

7 A force $\mathbf{F}$ is given by $\mathbf{F}=(3.5 \mathbf{i}+12 \mathbf{j}) \mathrm{N}$, where $\mathbf{i}$ and $\mathbf{j}$ are horizontal unit vectors east and north respectively.
(i) Calculate the magnitude of $\mathbf{F}$ and also its direction as a bearing.
(ii) $\mathbf{G}$ is the force $(7 \mathbf{i}+24 \mathbf{j}) \mathrm{N}$. Show that $\mathbf{G}$ and $\mathbf{F}$ are in the same direction and compare their magnitudes.
(iii) Force $\mathbf{F}_{1}$ is $(9 \mathbf{i}-18 \mathbf{j}) \mathrm{N}$ and force $\mathbf{F}_{2}$ is $(12 \mathbf{i}+q \mathbf{j}) \mathrm{N}$. Find $q$ so that the sum $\mathbf{F}_{1}+\mathbf{F}_{2}$ is in the direction of $\mathbf{F}$.

